Data Assimilation Methods for the Evolution of Glacier using Level Set Method

M. Alamgir Hossain,1 Sam Pimentel,2 and John Stockie1
1Department of Mathematics, Simon Fraser University, B.C., Canada
2Department of Mathematics, Trinity Western University, B.C., Canada

Introduction

Ice is an incompressible and non-Newtonian viscous fluid with extremely low Reynolds number flow.

A level set method handles topological changes of glaciers and the evolution of the ice-air or ice-water interface.

For short-term ice dynamics prediction, an optimal fit between observations and model output is essential.

A level set method for modeling glacier together with data assimilation is developing for advancing and re-creating glaciers and initialization of ice-sheet models.

Ice-sheet Model

Ice Flow Equations

\[\nabla \cdot \mathbf{v} = 0 \]

\[\rho (\mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla p + \nabla \cdot (\nu \nabla \mathbf{v}) + \rho g \]

Stokes Approximation

Ice is a slow moving fluid.

\(\rho (\mathbf{v} \cdot \nabla \mathbf{v}) \approx 0 \)

\(\nabla \cdot \mathbf{v} = 0 \)

\(\mathbf{v} = -\nabla p + \frac{\rho g}{\left(\frac{1}{n} \right)} \nabla \cdot \mathbf{v} + \frac{\rho g}{\left(\frac{1}{n} \right)} \nabla \cdot \mathbf{u} \)

\(\mathbf{u} \) is the strain rate tensor

\(\nu \) is the magnitude of \(\mathbf{u} \)

\(\nabla \cdot \mathbf{v} = \nabla \cdot \mathbf{v} \)

Shallow Ice Approximation (SIA)

\(H_t = M + \nabla \cdot (D \nabla h) \)

\(\Gamma = \frac{1}{\left(\frac{1}{n} \right)} \)

\(D = \nabla H + \nabla H^\top \)

\(n = 3 \) in Glen’s flow law

\(M \) is mass balance of ice

\(\rho \) is density of ice (1010 kg m\(^{-3}\))

Horizontal ice velocity,

\(w(x, z, t) = -\frac{\nabla h}{n+1} \left(H^{n+1} - (h-z)^{n+1} \right) [h_z]^{n+1} \)

and vertical velocity,

\(w(x, z, t) = -\frac{\partial}{\partial z} w(x, z, t) \)

Level Set Method

Experiment 1: P. Halfar found the similarity solution of the SIA in the case of flat bed (b(x) = 0) and no surface mass balance (M(x, t) = 0). Therefore the SIA equation becomes,

\[H_t = \nabla \cdot \left(\nabla H + \frac{\rho g}{\left(\frac{1}{n} \right)} \nabla \cdot \mathbf{v} - \mathbf{v} \right) \]

Now, the ice-air interface is expressed by,

\[\phi(x, t) = \frac{1}{2} |x - b(x, t)| \]

where \(\Omega \) represents the region inside ice and \(\partial \Omega \) represents the ice-air interface. The level set function \(\phi \) can be defined as a signed distance function,

\[\phi(x, t) = \frac{1}{2} |x - b(x, t)|, \quad \text{if} \quad x \in \Omega, \]

\[-\phi(x, t), \quad \text{if} \quad x \in \partial \Omega. \]

Results

Data Assimilation

Compute velocity \(\mathbf{v} \) from the Stokes equations

Compute surface evolution using level set method by imposing the velocity field \(\mathbf{v} \) and surface mass balance

Compute optimal surface evolution using observation data and data assimilation method and re-define level set function \(\phi(x, t) \) for prediction

Summary

A level set method is implemented for the solution of an ice-air interface subject to an imposed velocity field and surface mass balance

EKF is implemented for 1-D advection-diffusion equation with constant diffusivity

Future Work

Compute velocity \(\mathbf{v} \) from the Stokes equations

Compute surface evolution using level set method by imposing the velocity field \(\mathbf{v} \) and surface mass balance

Compute optimal surface evolution using observation data and data assimilation method and re-define level set function \(\phi(x, t) \) for prediction

References

Acknowledgements

The authors gratefully acknowledge research funding from NSERC Discovery Grant.

Figure 1: A marine ice sheet profile, image taken from Schoof [1].

Figure 2: (left) Grid points in the computational domain; (mid) Initial Level Set Function \(\phi(x, z, t = 0) \); (right) surface elevation \(z \) of the ice sheet.

Figure 3: Evolution of the interface subject to an imposed velocity field and surface mass balance.

Figure 4: EKF with 1-D advection-diffusion equation (diffusivity, \(\nu = 0.0 \)) at time, \(t = 2 \).